Ответ на постоянный вопрос о самой маленькой вещи во Вселенной развился вместе с человечеством. Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг.
Затем был открыт атом. Концепция атомов была впервые предложена греками, которые полагали, что объекты могут быть бесконечно разделены на две части, пока не останется одна неделимая частичка материи. Эта невообразимо малая единица не могла быть разделена дальше и поэтому называлась "атомом", образованным от греческого слова A-tomos. Где "А" означает "нет" и "томос" - делить.
Он считался неделимым, пока он не раскололся, чтобы обнаружить протоны, нейтроны и электроны внутри. Они тоже казались фундаментальными частицами, прежде чем ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.
Так какие же из частиц являются самыми маленькими во Вселенной?
10. ЭлектронЭлектрон - отрицательно заряженная субатомная частица. Он может быть свободным (не привязанным к какому-либо атому) или связанным с ядром атома. Электроны в атомах существуют в сферических оболочках различного радиуса, представляющих энергетические уровни. Чем больше сферическая оболочка, тем выше энергия, содержащаяся в электроне электрических проводниках поток тока возникает в результате движения электронов от атома к атому в отдельности и от отрицательных к положительным электрическим полюсам в целом. В полупроводниковых материалах ток также возникает как движение электронов.
9. ПозитронПозитроны - это античастицы электронов. Основным отличием от электронов является их положительный заряд. Позитроны образуются при распаде нуклидов, в ядре которых имеется избыток протонов по сравнению с числом нейронов, когда происходит распад, эти радионуклиды испускают позитрон и нейтрино.
В то время как нейтрино выходит без взаимодействия с окружающим веществом, позитрон взаимодействует с электроном. Во время этого процесса аннигиляции массы позитрона и электрона превращаются в два фотона, которые расходятся в почти противоположных направлениях.
8. ПротонПротонная стабильная субатомная частица с положительным зарядом, равным по величине единице заряда электрона и массой покоя 1,67262 × 10 -27 кг.
Около десяти лет назад казалось, что и спектроскопия, и эксперименты по рассеянию сходились на протонном радиусе 0,8768 фемтометров (миллионные доли миллионной доли миллиметра).
Но в 2010 году новый поворот в спектроскопии поставил под сомнение этот идиллический консенсус. Команда измерила протонный радиус 0,84184 фемтометров.
7. НейтронВы знаете, что нейтроны находятся в ядре атома. В нормальных условиях протоны и нейтроны слипаются в ядре. Во время радиоактивного распада они могут быть выбиты оттуда. Нейтронные числа способны изменять массу атомов, потому что они весят примерно столько же, сколько протон и электрон вместе.
Нейтроны можно найти практически во всех атомах вместе с протонами и электронами. Водород -1 является единственным исключением. Атомы с одинаковым количеством протонов, но с разным количеством нейтронов называются изотопами одного и того же элемента.
Количество нейтронов в атоме не влияет на его химические свойства. Однако это влияет на его период полураспада, меру его стабильности. Нестабильный изотоп имеет короткий период полураспада, при котором половина его распадается на более легкие элементы.
6. ФотонПредставьте себе луч желтого солнечного света, сияющего через окно. Согласно квантовой физике, этот луч состоит из миллиардов крошечных пакетов света, называемых фотонами, которые текут по воздуху. Но что такое фотон?
Фотон - это наименьшее дискретное количество или квант электромагнитного излучения. Это основная единица всего света.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью всем наблюдателям 2,998 × 10 8 м/с. Обычно это называют скоростью света, обозначаемой буквой с.
Согласно квантовой теории света Эйнштейна, фотоны имеют энергию, равную частоте их колебаний, умноженной на постоянную Планка. Эйнштейн доказал, что свет - это поток фотонов, энергия этих фотонов - это высота частоты их колебаний, а интенсивность света соответствует количеству фотонов.
5. КваркКварк - одна из фундаментальных частиц в физике. Они соединяются, чтобы сформировать адроны, такие как протоны и нейтроны, которые являются компонентами ядер атомов.
Кварк имеет ограничение, что означает, что кварки не наблюдаются независимо, но всегда в сочетании с другими кварками. Это делает невозможным непосредственное измерение свойств (массы, спина и четности); эти черты должны быть выведены из частиц, состоящих из них.
4. ГлюонСпустя миллионную долю секунды после Большого взрыва Вселенная была невероятно плотной плазмой, настолько горячей, что не могло существовать ни ядер, ни даже ядерных частиц.
Плазма состояла из кварков, частиц, которые составляют нуклоны и некоторые другие элементарные частицы, и глюонов, безмассовых частиц, которые "переносят" силу между кварками.
Глюоны - это обменные частицы для цветовой силы между кварками, аналогичные обмену фотонов в электромагнитной силе между двумя заряженными частицами. Глюон можно считать фундаментальной обменной частицей, лежащей в основе сильного взаимодействия между протонами и нейтронами в ядре.
3. МюонМюоны имеют такой же отрицательный заряд, как и электроны, но в 200 раз больше массы. Они возникают, когда частицы высокой энергии, называемые космическими лучами, врезаются в атомы в атмосфере Земли.
Путешествуя со скоростью, близкой к скорости света, мюоны осыпают Землю со всех сторон. Каждая область планеты размером с руку поражена примерно одним мюоном в секунду, и частицы могут пройти через сотни метров твердого материала, прежде чем они будут поглощены.
По словам Кристины Карлогану, физика из Физической лаборатории Клермон-Феррана во Франции, их вездесущность и проникающая способность делают мюоны идеальными для визуализации больших плотных объектов без их повреждения.
2. НейтриноНейтрино - это субатомная частица, которая очень похожа на электрон, но не имеет электрического заряда и очень маленькой массы, которая может даже быть нулевой.
Нейтрино являются одной из самых распространенных частиц во Вселенной. Однако, поскольку они очень мало взаимодействуют с материей, их невероятно сложно обнаружить.
Для обнаружения нейтрино требуются очень большие и очень чувствительные детекторы. Как правило, нейтрино с низкой энергией проходит через многие световые годы нормальной материи, прежде чем взаимодействовать с чем-либо.
Следовательно, все наземные нейтринные эксперименты основаны на измерении крошечной доли нейтрино, которые взаимодействуют в детекторах разумного размера.
1. Бозон ХиггсаФизике частиц обычно тяжело конкурировать с политикой и сплетнями знаменитостей за заголовки, но бозон Хиггса привлек серьезное внимание. Возможно, знаменитое и неоднозначное прозвище знаменитого бозона, "Частица Бога", заставляло гудеть средства массовой информации.
С другой стороны, интригующая возможность того, что бозон Хиггса отвечает за всю массу во Вселенной, захватывает воображение.
Бозон Хиггса является, если не сказать, самой дорогой частицей всех времен. Это немного несправедливое сравнение; например, для открытия электрона потребовалось немного больше, чем для вакуумной трубки и настоящего гения, а для поиска бозона Хиггса потребовалось создание экспериментальных энергий, которые раньше редко встречались на планете Земля.©